Mailer.cfc 1.5 Documentation
Table of Contents

· What is Mailer.cfc?
· Getting Started

· Sending Email

· Notices

· Logging

· Simulated Mailing

What is Mailer.cfc?

Mailer.cfc is a component to handle sending email from ColdFusion. It is essentially another layer of abstraction over cfmail.

This extra layer of abstraction does add some advantages. It allows all email settings to be centralized. This would include the username/password settings (or lack thereof).

Additionally, it provides the ability to switch to a simulated mailer that logs (but doesn’t send) email.
This is especially useful when dealing with CFCs, as it allows you to pass in the mailer component instead of several settings for email. Combined with the simulated mailer (covered later), this is also ideal for development and testing.
Getting Started

To use Mailer.cfc, follow these steps:

1. Download Mailer.cfc
2. Place it where you want to store it (code example assumes root of site or CustomTags directory).

3. Initialize Mailer.cfc
Application.Mailer = CreateObject("component","Mailer").init("mail.example.com","from@example.com")

Note that “mail.example.com” (the MailServer) and from@example.com (the default from address) could also be a variables.

Sending Email

http://www.bryantwebconsulting.com/cfcs/Mailer.htm#method_send
Sending email from Mailer.cfc is simply a matter of calling the send() method and passing the appropriate values.
Most of the arguments are pretty obvious. The ones that bear some explanation have to do with the contents of the email. You have two choices, use the “Contents” argument with the optional “type” argument to determine if the email is text or HTML.

· Use the “Contents” argument and optionally use the “type” argument to determine if the email is in text format or HTML.

· Use the “Text” and/or “HTML” arguments to send HTML or Text email messages. Using both will result in a multi-part email message.

Notices

http://steve.coldfusionjournal.com/mailercfc_notices.htm
Mailer.cfc also has the concept of notices which allow you to send personalized information where the contents of the email are dynamic. For example, you could have a user create a message and then send the message to multiple recipients, replacing markers in the email with personalized information.

To add a notice, use the addNotice() method. You must give the notice a unique name by which Mailer.cfc will reference the notice. The other arguments are the same as the arguments for the send() method. You can also include markers for data by wrapping a word in brackets. For example, you can have "Dear [FirstName]," in the contents and have "[FirstName]" replaced with a first name when you send the notice.

The addNotice() method also has an optional datakeys argument as a list of required variables for which markers are in the notice. 

To send a notice, use the sendNotice() method. This method has just two arguments:

· name: the name of the notice you want to send

· data: a structure of data to replace the markers used in addNotice()

So, the data structure could have a "FirstName" key to replace the "[FirstName]" marker. The keys in the structure can also replace any of the arguments of the send() method. For example, it could have a "To" key to replace the "To" argument of the send() method.

Logging

Mailer.cfc allows you to log email that it sends. Although Mailer.cfc does not normally require any other components, but logging does require the use of DataMgr. This means that the logging will work with any database supported by DataMgr.
To log email, just call the startLogging() method and pass in the DataMgr component as the first argument – optionally passing in the name of the table to use for logging (which Mailer.cfc will create via DataMgr).
If you decide to stop logging email, just call stopLogging().

Simulated Mailing
You can set Mailer.cfc to not send email and log it instead by creating the Mailer component from a Mailer_Sim.cfc file.
Application.Mailer = CreateObject("component","Mailer_Sim").init(MailServer="mail.example.com",DefaultFrom=from@example.com,DataMgr=Application.DataMgr)

After that, all code remains the same. The advantage of this is that you can switch from testing email to actually sending it without changing any code outside of the component instantiation code.
